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INTRODUCTION INTRODUCTION

» Crime prediction helps optimize resource use and enhance public safety.

» Traditional statistical models often fall short in capturing the non-linear
patterns in crime data.

» Accurate crime prediction supports smarter policing by enabling better
planning and faster response to incidents.

» Understanding crime patterns helps allocate resources efficiently and reduces
the risk of crime in vulnerable areas.

» This study compares the performance of Random Forest (RF) and Support
Vector Machine (SVM) classifiers. The goal is to determine which algorithm
provides more accurate predictions.

MATERIALS AND METHODS MATERIALS AND METHODS

» Crime prediction models benefit from incorporating spatial-temporal data,
such as mapping incidents by time and location, which enhances prediction |
accuracy.

» Hyperparameter tuning is critical for both models, but especially for KNN,
where choosing the wrong number of neighbors can drastically reduce
prediction performance.
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> Random Forest outperformed Support Vector Machine in accuracy and precision, demonstrating > Random Forest surpassed K-Nearest Neighbors in both accuracy and precision, showcasing a
superior handling of complex fraud patterns. stronger capability to identify complex fraud patterns.

» Support Vector Machine struggled with non-linear relationships, leading to poorer performance on > K-Nearest Neighbors had difficulty managing non-linear relationships, resulting in lower
sophisticated fraud tactics. effectiveness against sophisticated fraud schemes.

> Random Forest's ensemble approach captured significance value of 0.04 (p<0.05), better fraud > Random Forest's ensemble approach captured significance value of 0.03 (p<0.05), better fraud
detection. detection.

» While requiring more computational power, Random Forest delivered significantly better results > Although Random Forest demands greater computational resources, it delivered substantially
(96.4% vs. 89.4% accuracy). superior results, achieving 96.4% accuracy compared to 83.2%.

> Future research can examine how modern surveillance methods influence crime rates and public > Future research can analyze the relationship between unemployment rates and crime levels
safety. across different regions.
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INTRODUCTION INTRODUCTION

» Accurate crime rate prediction is essential for proactive policing, enabling
authorities to anticipate incidents and allocate resources more effectively.

» With the increasing availability of crime data, machine learning techniques
offer powerful tools to uncover hidden patterns and support evidence-based
decision-making.

» Comparative analysis of predictive models helps identify the most effective
approaches, ensuring that crime prediction systems are both accurate and

» Linear models may struggle to capture complex relationships in crime
data, especially when patterns involve interactions between multiple
factors like location, time, and socioeconomic indicators.

» Feature interactions and non-linear trends are common in crime patterns,
which makes it important to evaluate models that can automatically
capture these complexities.

» Machine Learning algorithms techniques helps better in Crime Rates

reliable. prediction.
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Tree (DT) classifiers. The goal is to determine which algorithm provides more " . ) Logistics Regression (LR) classifiers. The goal is to determine which
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DISCUSSION AND CONCLUSION DISCUSSION AND CONCLUSION

> Random Forest outperformed Logistics Regression in accuracy and precision, demonstrating
superior handling of complex fraud patterns.

Logistic Regression is a statistical method used to model the probability of a binary outcome,
making it useful for predicting whether a crime will occur in a specific area or not based on
historical and contextual data.

» Random Forest surpassed the Decision Tree algorithm in both accuracy and precision, showcasing
its enhanced ability to identify complex fraud patterns. >
» The Decision Tree algorithm faced challenges in capturing non-linear relationships, resulting in
lower effectiveness against sophisticated fraud schemes.

» By utilizing an ensemble strategy, Random Forest effectively modeled significance value of 0.02 > Random Forest's ensemble approach captured significance value of 0.04 (p<0.05), better fraud
(p<0.05),, improving fraud detection capabilities. detection
» Although Random Forest demands greater computational resources, it delivered substantially > While requiring more computational power, Random Forest delivered significantly better
superior results, achieving 96.4% accuracy compared to Decision Tree of 81.4%. results (96.4% vs. 78.4% accuracy)
g gutturl;e tl:esearch can explore the impact of urban planning and infrastructure on crime > Future research can investigate the influence of social media on the organization and reporting
istribution.

of crimes.
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